Orthogonality constraints and entropy in the SO(5)-Theory of HighTc-Superconductivity

نویسنده

  • Franz J. Wegner
چکیده

S.C. Zhang has put forward the idea that high-temperature-superconductors can be described in the framework of an SO(5)-symmetric theory in which the three components of the antiferromagnetic order-parameter and the two components of the two-particle condensate form a fivecomponent order-parameter with SO(5) symmetry. Interactions small in comparison to this strong interaction introduce anisotropies into the SO(5)-space and determine whether it is favorable for the system to be superconducting or antiferromagnetic. Here the view is expressed that Zhang’s derivation of the effective interaction Veff based on his Hamiltonian Ha is not correct. However, the orthogonality constraints introduced several pages after this ’derivation’ give the key to an effective interaction very similar to that given by Zhang. It is shown that the orthogonality constraints are not rigorous constraints, but they maximize the entropy at finite temperature. If the interaction drives the ground-state to the largest possible eigenvalues of the operators under consideration (antiferromagnetic ordering, superconducting condensate, etc.), then the orthogonality constraints are obeyed by the ground-state, too.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of the Maximum Entropy Problem as an Optimal Control Problem and its Application to Pdf Estimation of Electricity Price

In this paper, the continuous optimal control theory is used to model and solve the maximum entropy problem for a continuous random variable. The maximum entropy principle provides a method to obtain least-biased probability density function (Pdf) estimation. In this paper, to find a closed form solution for the maximum entropy problem with any number of moment constraints, the entropy is consi...

متن کامل

The reduced total isotope effect and its implications on the nature of superconductivity in MgB2

The recent discovery of superconductivity at ~39 K in MgB2, by Nagamatsu et al.1 establishes this simple binary compound as having the highest bulk superconducting transition temperature, Tc, of any non-copper-oxide material. Much of the initial research has focused on whether MgB2 is a conventional BCS, electron-phonon mediated superconductor, and, if it is, why Tc is so high. Isotope effect m...

متن کامل

پیشگفتار

  The First National Conference on Advances in Superconductivity was the first of a series of conferences in the field of superconductivity planned to be held biannually in one of the universities or scientific research centers in the country. The goal of these meetings is to bring together groups of researchers in the field of experimental and theoretical superconductivity, to discuss their la...

متن کامل

Magnetic field-induced superconductivity: A unique interplay between magnetic and superconducting orderings. (March 3, 2004)

The complex interplay between magnetism and superconductivity is a central topic in condensed matter physics due to increasing evidence indicating that unconventional superconductivity (SC) occurs in the vicinity of magnetically ordered states. The experimental observations inspired models proposing "magnetically mediated" SC pairing in the proximity of magnetic quantum-criticality in a variety...

متن کامل

Maximum Entropy Analysis for G/G/1 Queuing System (TECHNICAL NOTE)

This paper provides steady state queue-size distribution for a G/G/1 queue by using principle of maximum entropy. For this purpose we have used average queue length and normalizing condition as constraints to derive queue-size distribution. Our results give good approximation as demonstrated by taking a numerical illustration. In particular case when square coefficient of variation of inter-arr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008